Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells
نویسندگان
چکیده
Progesterone plays critical roles in maintaining a successful pregnancy at the early embryonic stage. Human chorionic gonadotropin (hCG) rapidly induces amphiregulin (AREG) expression. However, it remains unknown whether AREG mediates hCG-induced progesterone production. Thus, the objective of this study was to investigate the role of AREG in hCG-induced progesterone production and the underlying molecular mechanism in human granulosa cells; primary cells were used as the experimental model. We demonstrated that the inhibition of EGFR and the knockdown of AREG abolished hCG-induced steroidogenic acute regulatory protein (StAR) expression and progesterone production. Importantly, follicular fluid AREG levels were positively correlated with progesterone levels in the follicular fluid and serum. Treatment with AREG increased StAR expression and progesterone production, and these stimulatory effects were abolished by EGFR inhibition. Moreover, activation of ERK1/2, but not PI3K/Akt, signaling was required for the AREG-induced up-regulation of StAR expression and progesterone production. Our results demonstrate that AREG mediates hCG-induced StAR expression and progesterone production in human granulosa cells, providing novel evidence for the role of AREG in the regulation of steroidogenesis.
منابع مشابه
hCG-induced Sprouty2 mediates amphiregulin-stimulated COX-2/PGE2 up-regulation in human granulosa cells: a potential mechanism for the OHSS
Sprouty2 (SPRY2) is an important intracellular regulator for epidermal growth factor receptor (EGFR)-mediated ERK1/2 signaling. In human granulosa cells, although SPRY2 is expressed, its regulation and function remains complete unknown and must be defined. Our previous study has shown that human chorionic gonadotropin (hCG)/luteinizing hormone (LH) up-regulates the expression levels of EGF-like...
متن کاملLeptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP) signaling to inhibit steroidogenesis in human granulosa cells
BACKGROUND Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. METHODS The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG) cells was examined by Enzyme linked immunosorbent assay (ELISA). T...
متن کاملRegulation of interleukin-11 expression in ovulatory follicles of the rat ovary.
The aim of the present study was to examine the regulation of interleukin (IL)-11 expression, as well as the role of IL-11, during ovulation in gonadotropin-primed immature rats. Injection of equine chorionic gonadotropin (eCG), followed by human CG (hCG) to induce superovulation stimulated expression of the Il11 gene in theca cells within 6h, as revealed by northern blot and in situ hybridisat...
متن کاملRelationship between steroidogenic acute regulatory protein expression and progesterone production in hen granulosa cells during follicle development.
The present studies were conducted to address cellular mechanisms responsible for regulating steroidogenic acute regulatory protein (StAR) expression and progesterone synthesis at maturational stages corresponding to both the time of hen follicle selection, as well as before and after the LH surge in preovulatory follicle granulosa cells. A recently published report has established that mitogen...
متن کاملFractalkine is expressed in the human ovary and increases progesterone biosynthesis in human luteinised granulosa cells
BACKGROUND Recent evidence from rodent ovaries has demonstrated expression of fractalkine and the existence of fractalkine receptor, and showed that there is a significant increase in steroidogenesis in response to fractalkine, yet the role of fractalkine and CX3CR1 in the human ovary is still unknown. This study aimed to determine the expression levels of fractalkine and CX3CR1 in the human ov...
متن کامل